
PharmaBlock

PharmaBlock Sciences (Nanjing), Inc.

www.pharmablock.com product.pharmablock.com

Flow Chemistry

210+ projects 30+ reaction types

kilo to metric ton scale

Application in safer, more stable, higher-yield processes

- High temperature/pressure
- Highly energetic
- Cryogenic
- Highly reactive and air-sensitive

- Toxic and/or stinky agents
- Unstable intermediates
- Oxidation and/or ozonization
- Diazotization

Reactors

- Single-tube
- Multi-tube
- Static mixer
- Fixed/micropacked bed

- CSTR
- Electrochemistry reactor
- Photo-flow reactor
- Other materials

Cases

Cryogenic reaction

Entry	Comparison	Batch	Flow	
1	Feasibility of scaling up	×	√	
2	Temperature	-70 to -60°C	-40 to 10 °C	
3	Yield	N/A	84%	
4	Scaling-up risk High Low			
Result	Completed 260 kg product with 240 mL continuous flow reactor in 30 hours			

Diazotization

Entry	Comparison	Batch	Flow
1	Feasibility of scaling up	×	√
2	Temperature	N/A	5 to 10 °C
3	Yield	N/A	80 - 85%
4	Scaling-up risk High Low		
Result	Completed 200 kg product with a set of 100 mL continuous flow reactor in 2-3 days		

Entry	Comparison	Batch	Flow
1	Feasibility of scaling up	×	√
2	Temperature	20 - 30 °C	30 - 60 °C
3	Yield	N/A	90 - 93%
4	Scaling-up risk	High	Low
5	Automatic leve Low High		High
Result	Over 300 kg of product completed with an integrated continuous tubing reactor		

High temperature

Entry	Comparison	Batch	Flow
1	Feasibility of scaling up	×	√
2	Temperature	200 °C	220 - 250 °C
3	Yield	N/A	> 94%
4	Scaling-up risk	High	Low
5	Automatic leve Diphenyl ether (BP: 258°C) Toluene (BP: 110°C)		Toluene (BP: 110°C)
Result	Over 100 kg of product completed		

Oxidation

$$\begin{array}{c|c}
R_1 & \text{air} \\
R_2 & \text{oH} & \\
\hline
 & in microreactor
\end{array}$$

Entry	Comparison	Batch	Flow
1	PMI	15	7
2	Time	> 4 h	10 min
3	Yield	88 - 90%	95%
4	Complexity of work-up High Low		Low
Result	Over 100 kg of product completed		

Photocatalytic reaction

$$\begin{bmatrix} R_1 & R_3 & \mathbf{0} \\ R_2 & R_4 & \mathbf{0} \end{bmatrix} \xrightarrow{hv} \begin{bmatrix} R_1 & R_3 & \mathbf{0} \\ R_2 & R_4 & \mathbf{0} \end{bmatrix}$$

Entry	Comparison	Batch	Flow
1	Feasibility of scaling up	×	√
2	Time	30 h	40 - 50 min
3	Light source	Medium pressure mercury lamp	365 nm LED
4	Scaling-up risk	High	Low
Result	Over 500 kg of product completed		

Micropacked Bed Technology

300+ projects

kilo to metric ton scale

commercial and GMP projects

Technical advantages

- Safety, Efficiency, Consistency
 - · Meet safety regulations
 - ncreased productivity
 - No batch variation
 - Heavy metal < 10 ppm

- Superior selectivity
- Significant cost savings
 - Lower catalyst cost
 - · Lower solvent usage
 - Shorter production time

Reactions applied at manufacturing scale

- Deprotection
- Nitro reduction
- Nitrile reduction
- Diazo reduction
- Oxime reduction
- Olefin/acetylene reduction

- Reductive amination
- Phenyl ring reduction
- Selective dehalogenation
- Pyridine ring reduction
- Asymmetric hydrogenation

Cases

$$R_3$$
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_2
 R_4
 R_5
 R_6
 R_7
 R_7

Comparison	Batch	Micropacked bed
Activity	Not feasible	Conversion rate ≥ 90%
Impurity Not feasible		Dehalogenation impurity < 3%

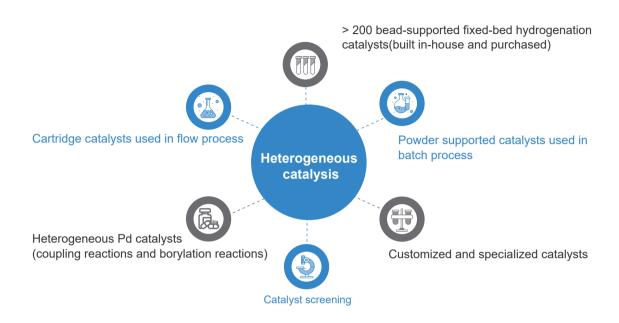
$$R_3$$
 N R_5 R_4 R_4 R_5 R_4 R_4 R_5 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_6 R_7 R_8

Comparison	Batch	Micropacked bed
Yield	70%	≥ 85%
Impurity	~15%	< 3%
Work up	Complex	Easy
Catalyst cost	High	Reduced 91% noble metal consumption

Integrated solutions

- Proof of concept and bench-scale R&D of flow hydrogenation process
- Pilot-scale process research, design and operation
- Turnkey solution service for industrial-scale plant operation (including hydrogenation process, equipment and catalyst)

300+

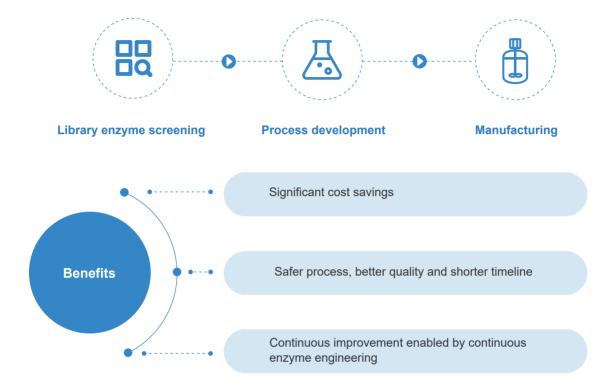

heterogeneous catalysts

200+

biocatalysis projects

kilo to hundred-kilo scale

Heterogeneous catalysis



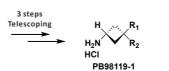
Miyaura borylation and Suzuki coupling case

Phosphine compound is polymerized into bulk material, thus the ligand is micronized and suitable for separation and recycling.


Catalysis

Biocatalysis

- > 500 enzymes in stock (commercial and in-house)
- Fermentation: up to 100 L
- · Screening and process development
- Directed evolution


Case

Biocatalysis route 1:

$$0 = \begin{array}{c|c} R_1 & \xrightarrow{ATA} & \xrightarrow{H_2N} & R_1 & \xrightarrow{i) (Boc)_2O} & \xrightarrow{ii) HCl} & \xrightarrow{H_2N} & R_2 \\ \hline \\ P_2 & & & & & & & & & & & & \\ \hline \\ R_2 & & & & & & & & & & \\ \hline \\ R_2 & & & & & & & & & \\ \hline \\ R_2 & & & & & & & & \\ \hline \\ R_2 & & & & & & & \\ \hline \\ R_2 & & & & & & \\ \hline \\ R_2 & & & & & & \\ \hline \\ R_2 & & & & & \\ \hline \\ R_2 & & & & & \\ \hline \\ R_2 & & & & & \\ \hline \\ R_2 & & & & \\ \hline \\ R_2 & & & & \\ \hline \\ R_2 & & & \\ \hline \\ R_3 & & & \\ \hline \\ R_2 & & & \\ \hline \\ R_3 & & & \\ \hline \\ R_4 & & & \\ \hline \\ R_5 &$$

Biocatalysis route 2:

70.6% Total yield for 4 steps >99% ee >10 kg scale

41.4% Total yield for 3 steps >99% ee

About PharmaBlock

PharmaBlock Sciences (Nanjing), Inc. (SZSE: 300725) is a leading provider of innovative chemistry products and services throughout the pharmaceutical R&D process and commercial production. Its core businesses include a rationally designed building blocks collection, (supplying from discovery to development and commercialization), development and manufacturing of RSMs, intermediates and APIs, and drug products for drug development and commercialization. Integrating the cutting-edge technologies such as continuous flow chemistry, micropacked bed technology, catalysis, and AI, the company is exploring green, safe and intelligent manufacturing models to promote the innovative development of the biopharmaceutical industry.

Since its founding in 2008, PharmaBlock has partnered with almost all the top 20 pharmaceutical companies, and hundreds of small to medium-sized biotech companies around the world. Its ever-evolving mission leverages the top notch expertise in chemistry and new technologies to support partners to accelerate drug discovery and development, and move the new molecules into market at full speed.

Teams

Our core management and technical teams have in-depth industry experience in leadership and R&D, previously spearheading drug discovery and CMC campaigns at Roche, GSK, Boehringer Ingelheim, Merck, Agios and other global pharmaceutical and biotech companies.

2,400+ 1,000+ 100+ 40%+

Employees Well-trained scientists PhDs Master's & above

Capacity

PharmaBlock

Innovative chemistry for a better future

PharmaBlock Sciences (Nanjing), Inc.

Address: 81 Huasheng Road, Jiangbei New District

Nanjing, Jiangsu 210032, China

Tel: +86-400 025 5188 Fax: +86-25 8691 8232

E-mail: sales@pharmablock.com

PharmaBlock (USA), Inc.

Address: 777 Schwab Rd, Unit D

Hatfield, PA 19440, USA

Tel: +1(877)878-5226 / +1(267)649-7271

Fax:+1(267)222-7551

E-mail: salesusa@pharmablock.com

PharmaBlock Pharmaceuticals (Zhejiang) Co., Ltd.

Address: 11 Weiqi Road, Hangzhou Bay Shangyu Economic and Technological Development Area, Shaoxing, Zhejiang, China

PharmaBlock Pharmaceuticals (Shandong) Co., Ltd.

Address: Renhe Road, Economic Development District, Pingyuan County,

Dezhou City, Shandong, China

Product Sparch

Wechat

LinkedIn